

Advanced Land Observing Satellite (ALOS)

David A. Benner
NOAA/NESDIS Direct Services Division
U.S. Government SAR Symposium
Canadian Embassy, Washington D.C.
March 28-29, 2001

Topics

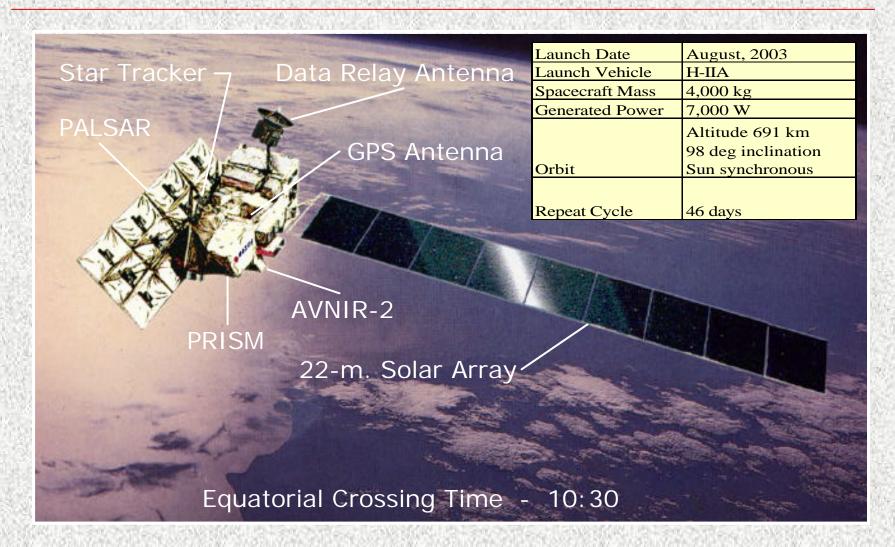
- Background
- Spacecraft / Sensor Characteristics
- Applications
- Data Node Role
- Data Node Concept / Functions / Infrastructure
- Partnership Opportunities

Background

- ALOS has three co-registered instruments:
 - Synthetic Aperture Radar (SAR)
 - High-resolution stereo panchromatic imager
 - Medium-resolution multi-spectral imager
- NASDA together with Ministry of Trade and Industry (MITI) are developing ALOS for June, 2003 launch
- ALOS will be successor to Marine Observation Satellite (MOS-1, -1b); Japanese Earth Resources Satellite (JERS-1); and, ADvanced Earth Observing Satellite (ADEOS)
- ALOS also a prototype for future Japan SAR launch
- Scientific research mission; also, resource survey
- Commercial partnerships still TBD

Background - cont'd

- NOAA is lead U.S. agency contact for discussions with NASDA regarding U.S. ALOS participation
- NOAA cooperated with NASDA on JERS-1 mission
- NOAA has been an operational user of European Space Agency (ESA) ERS-1 / 2 SAR data
- NOAA and NASA are major users of Radarsat-1 data
- NOAA and U.S. National Ice Center surveying interest by U.S. and Canadian Federal agencies in ALOS data


Background - cont'd

- NASDA now establishing international ground networks for archiving and distribution
- ALOS Critical Design Review just completed; new Mission Operations Interface Specification due 3/01
- NASDA seeks Letter Of Interest (LOI) from international space agencies on:
 - Data requirements -- sensors, mode, time of year, geographic regions and applications
 - Overview of proposed Americas Data Node architecture
 - Data Node system development plan and schedule
 - Cooperating agencies/roles; draft Data Node data policy
 - Administrative and engineering points of contact

Background - cont'd

- ESA signed LOI one year ago as European Data Node;
 Australian LOI not yet finalized
- Attended 1st and 2nd International Data Node (DN) symposiums - held in Tokyo, 3/00 and Canberra, 12/00
 - ESA (15 members) represented European DN
 - AusLIG / ACRES represented Australia / Oceania DN
 - NOAA represented possible North American DN
 - NASDA would operate Asian DN
- NOAA interested in ALOS partnership arrangements with Government agencies and commercial firms
- 3rd ALOS Data Node meeting June 5-8, 2001 in Tokyo

ALOS Satellite

PALSAR Instrument

- Phased-Array L-band Synthetic Aperture Radar
- Single/Dual Polarization L-band SAR (1270 MHz)
- Standard mode:
 - 8-60° incidence angle (typical 39°)
 - 70-km swath width
 - 10-m. spatial resolution
 - 240-Mbps data rate
 - S/N -25dB; S/A 25 dB at 35° look angle
- ScanSAR mode:
 - 18-43° incidence angle
 - 250-350 km swath width
 - 100-m spatial resolution (multi-look)
 - 120 or 240 Mbps data rate

PALSAR Modes

Mode	High Resolution		Direct	SCANSAR	Polarimery
	Single Polarization	Dual Polarization	Downlink		
Frequency	L band (1270MHz)				
Chirp Bandwidth	28MHz	14MHz	14MHz	14/28MHz	14MHz
Polarization	HH or VV	HH/HV or VV/VH	HH or VV	HH or VV	HH/HV +VV/VH
Incidence Angle	8-60deg (typ 39deg)	8-60deg (typ 39deg)	8-60deg (typ 39deg)	18-43deg	8-30deg (typ 24deg)
Range Resolution	7-44m 10m@39deg	14-88m 20m@39deg	14-88m 20m@39deg	100m (Multi-look)	24-89m 30m@24deg
Swath Width	40-70km	40-70km	40-70km	250-350km	20-65km
Bit Length	5 bits	5 bits	3/5 bits	5 bits	3/5 bits
Data Rate	240Mbps	240Mbps	120Mbps	120/240Mbps	240Mbps

PRISM Instrument

- Panchromatic Remote Sensing Instruments for Stereo
 Mapping
- Wavelength 0.52-0.77 um
- 35-km swath width in triplet stereo mapping mode
- 70-km swath width in nadir imaging mode
- 2.5-m IFOV
- 960-Mbps data rate compressed (lossy) to 240 Mbps
- Capable of generating 3-5 m. DEMs

AVNIR-2 Instrument

- Advanced Visible and Near Infrared Radiometer 2
- 70-km swath width
- 10-m IFOV (at nadir)
- ± 44° pointing angle
- 160-Mbps data rate losslessly compressed to 120 Mbps
- Four spectral bands
 - 0.42 0.50 µm
 - 0.52 0.60 μm
 - 0.61 0.69 µm
 - 0.76 0.89 µm
 - Steerable to obtain coincident coverage with PALSAR

On-Board Recorder

- High Speed Solid State Recorder (HSSR)
- 720-Gb solid-state memory
- Simultaneous read and write
- 360/240/120 Mbps (selectable) recording speed
- 240/120 Mbps (selectable) reproduction speed
- Unit is key component to managing ALOS' 600-Mbps data generation capability -

PALSAR: 240 Mbps

PRISM: 240 Mbps

AVNIR-2: 120 Mbps

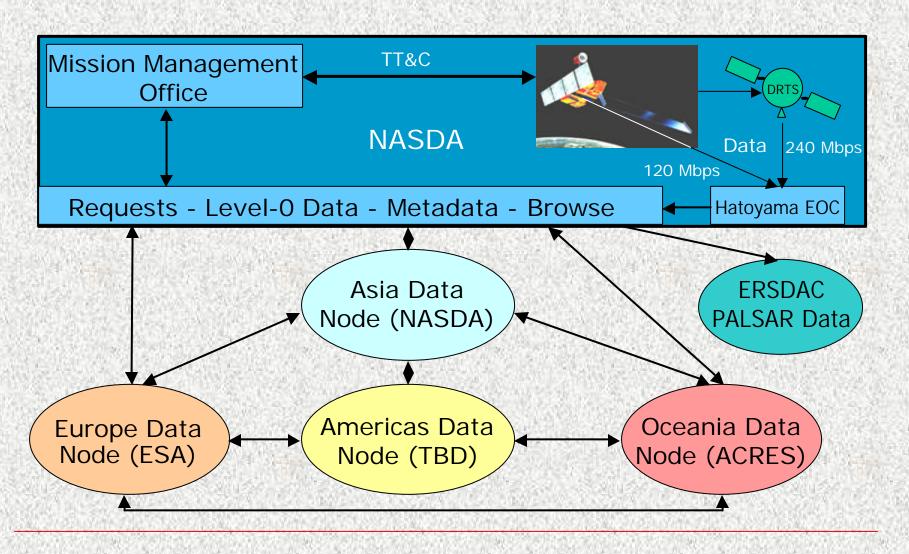
Spacecraft Downlinks

- ALOS has two space-to-ground links:
 - 240-Mbps Ka band link to Data Relay Telemetry Satellite (DRTS)
 - 120-Mbps X-band non-directional downlink to ground stations
- Two DRTS eventually will be operational: East & West
- First satellite will be launched mid-2002
- Second satellite could trail by two years
- Conclusion:
 - Current design very dependent on successful DRTS
 - Ground station network useful to downlink recorded data
 - Real-time data available via direct downlink to Data Nodes

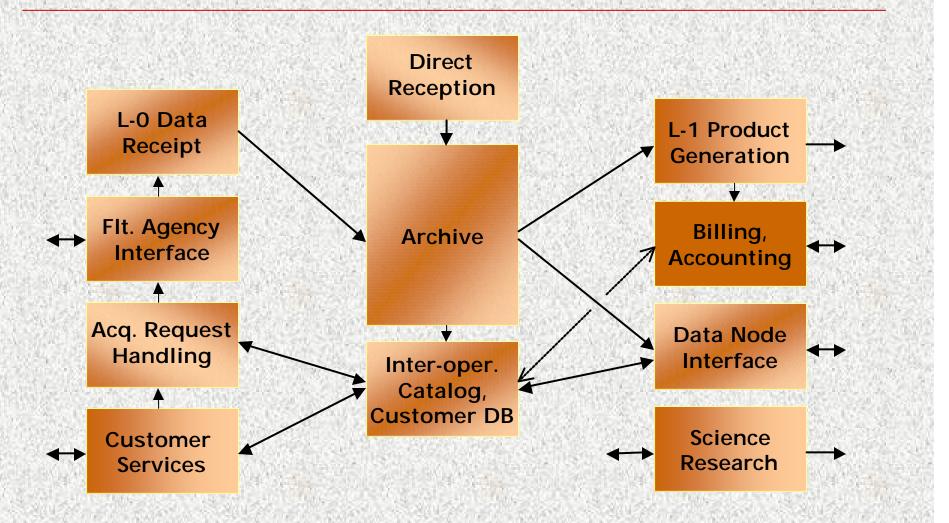
Applications

PALSAR

- Sea ice mapping
- Disaster monitoring
- Ocean Winds
- Vessel positions
- Crustal deformation and subsidence measurement


PRISM

- Cartography map generation and revision
- AVNIR-2
 - Natural resource survey
 - Global land-cover classification
 - Global forest inventory


Role of Data Node

- Generate regional conflict-free acquisition requests
- Receive regional L-0 data from NASDA
- Receive direct downlink from satellite (optional)
- Generate & maintain interoperable catalog and browse
- Maintain archive of L-0 data for five years
- Provide WWW query capability
- Receive and process orders
- Generate and distribute products
- Provide L-0 and product data to other regional nodes
- Contribute to Earth science research
- Contribute to development of higher-level algorithms

Japanese Regional Data Node Concept

Notional Data Node Functions

Partnership Opportunities

- NOAA has firm operational requirement for SAR data, and would support the proposed international data node concept.
- Partnerships are required to fund development of the North American data node.
- NOAA would welcome participation by U.S.Government agencies and/or industry in ALOS mission support and data utilization